
CS-473
Pattern Recognition

Tutorial for Assignment 4

T.As.: Myrto Villia , Despina - Ekaterini Argiropoulos, Michalis Savorianakis

Tutor: Panos Trahanias

April, 2025

Outline of the presentation

● Exercise 1: Single-sample Perceptron

● Exercise 2: Batch Perceptron

Dataset

You are given the dataset :

You should separate them according to labels!

Exercise 1: Single-sample Perceptron

What are the dimensions of a and y?

Exercise 1: Single-sample Perceptron

For each iteration :

● Step 1: Pick a single random sample

● Step 2: Compute the score of the sample

● Step 3: Compute the prediction of the sample

● Step 4: Update a.
There are 4 cases (for our exercise), in two of them you have to update a, in the other two you do

not need to update. What are these 4 cases?

Exercise 1: Single-sample Perceptron

We are starting with a random decision boundary, a. The vector a decides how I split space.

Step 2: Compute the score of the sample
score=a*current_random_sample. What is the dimension of score?

Step 3: Compute the prediction of the sample
Define a convention: score >= 0 → predicted class 0, score < 0 → predicted class 1.

Then we train the weights so that this decision rule gets better at matching the real labels in the data.

If we flipped the rule to score >= 0 → class 1, you'd be training the weights to learn another(?) decision
boundary.

Exercise 1: Single-sample Perceptron

Step 4: Update a.

If a sample has a wrong prediction 0 (i.e., score >= 0), what is the update rule

and why?

● The model thinks it's class 0. But if that prediction is wrong, the true label

is 1.

● So we need to make the score more negative, to push it into the correct

side of the decision boundary.

If a sample has a wrong prediction 1 (i.e., score < 0), what is the update rule

and why?

● The model thinks it's class 1. But if it's wrong, the true label is 0.

● We need to increase the score, to push it to the correct side.

Exercise 1: Single-sample Perceptron

You need to compute an accuracy value in each iteration. Be careful how to compute accuracy.
Use all the samples.

Exercise 1: Single-sample Perceptron

The model learns a weight vector a=[a1,a2,b].

For a 2D input point x=[x1,x2], the classifier computes a score.

The decision boundary is the set of all points for which score=0 — this forms a line in 2D space.

Generate a grid of 2D points over the data space and compute the score z for each one using the
model.

If we had 1D data (a single feature), the decision boundary would be a point on the real line. In 2D,
that boundary becomes a line; in 3D, it would be a plane; in higher dimensions, it becomes a
hyperplane.

Exercise 1: Single-sample Perceptron

Exercise 2: Batch Perceptron

Exercise 2: Batch Perceptron

The Batch Perceptron algorithm updates the weight vector using multiple samples at once (a batch), instead of just

one at a time like the single-sample version.

Intuition:

Rather than reacting to each mistake immediately, the Batch Perceptron says:

“Let me see all the mistakes I’m currently making in this batch and then update once, based on the sum

of all those mistakes.”

Exercise 2: Batch Perceptron

 while error >= theta:

Step 1: Pick batch_size random samples from the dataset.

Step 2: Compute the Scores. What is the dimension?

Step 3: Predict Class Labels: If score < 0 → predicted class 1, else → predicted class 0. How many predictions at

each iteration?

Step 4: Update Weight

Step 5: Recalculate predictions across entire dataset for accuracy.

Exercise 2: Batch Perceptron
Step 4: Update Weight

Weight vector: a = [a1,a2,b], Sample: y = [x1,x2,1], Label: label is either 0 or 1, Prediction: checking the sign of score = a ⋅ x

When we're training with batch perceptron, we go over many samples at once.

Each sample might:

Be classified correctly → we do nothing

Be classified wrongly → we want to update a

Let batch_size=4

● y1 = [x1, x2, 1], classified correctly or wrong? If prediction=class 0 and true=class 1-> subtract

● y2 = [x3, x4, 1], classified correctly or wrong? If prediction=class 1 and true=class 0-> add

● y3 = [x5, x6, 1], classified correctly or wrong? …
● y4 = [x7, x8, 1], classified correctly or wrong? …

That means: Only the wrong classified samples will be used in the sum
of the update rule. You have two options for the implementation of
the update rule. Either loop or multiplier mask of batch size length.

Exercise 2: Batch Perceptron

To define multipliers first you need to decide if you will use the rule a=a-... or a=a+...

Label = 1, Prediction = 0

● score = a ⋅ x >= 0 → predicted class 0

● True label is 1 → wrong prediction

● We want to make the score smaller

● → Subtract y from a

● Multiplier = +1-> using the multipliers is an easy way to avoid loops and ifs. It is not necessary.

a = a - lr * (+1 * x) → a = a - lr * x

Label = 0, Prediction = 1

● score = a ⋅ x < 0 → predicted class 1

● True label is 0 → wrong prediction

● We want to make the score bigger

● → Add x to a

● Multiplier = -1

a = a - lr * (-1 * x) → a = a + lr * x

Exercise 2: Batch Perceptron

Two samples (with bias added):

x1 = [1, 1], label = 1 (class 1)
x2 = [-1, 1], label = 0 (class 0)

Initial weights: a = [0, 0]

Compute scores

● score(x1) = a ⋅ x1 = 0

● score(x2) = a ⋅ x2 = 0

Prediction rule:

● If score ≥ 0 → class 0

● If score < 0 → class 1

So we predict:

● x1: score = 0 → class 0 ❌ (wrong)

● x2: score = 0 → class 0 ✅ (correct)

We need to fix x1, not x2

Build multiplier_mask:

● x1: wrong, predicted class 0, should be class 1 →

subtract it → +1

● x2: correct → 0

So:multiplier_mask = [1, 0]

update_step= x1 * 1 + x2 * 0 = [1, 1] + [0, 0] = [1, 1]

a = a - lr * update_step = [0, 0] - [1, 1] = [-1, -1]

EXAMPLE 1

Exercise 2: Batch Perceptron

Samples:

● x1 = [2, 1, 1], label = 1

● x2 = [1, 2, 1], label = 0

Initial weights: a = [0, 0, 0]

Step 1: Compute scores

● score(x1) = 0 → predict class 0 ❌ (should be 1)

● score(x2) = 0 → predict class 0 ✅ (correct)

Step 2: Multiplier mask

● x1 → wrong → +1

● x2 → correct → 0

→ multiplier_mask = [1, 0]

Step 3: Compute error

update_step = 1 * [2, 1, 1] + 0 * [1, 2, 1] = [2, 1, 1]

Step 4: Update weights

a = a - lr * update_step = [0, 0, 0] - 1 * [2, 1, 1] = [-2, -1, -1]

EXAMPLE 2

Exercise 2: Batch Perceptron

Samples:

x1 = [2, 2, 1], label = 1

x2 = [-3, 1, 1], label = 1

Initial weights:

a = [0, 0, 0]

Prediction rule:

score = a ⋅ x

if score ≥ 0 → class 0

if score < 0 → class 1

Step 1: Compute Scores

score(x1) = [0, 0, 0] ⋅ [2, 2, 1] = 0 → prediction = 0 → ❌ wrong

score(x2) = [0, 0, 0] ⋅ [-3, 1, 1] = 0 → prediction = 0 → ❌ wrong

Step 2: Ground Truth

Both labels = 1

Both predictions = 0 → both wrong

Step 3: Multiplier mask

Both predictions wrong → multiplier = +1 for both

Step 4: Compute Error

update_step = 1 * x1 + 1 * x2 = [2, 2, 1] + [-3, 1, 1] = [-1, 3, 2]

Step 5: Update weights

a = a - lr *update_step

EXAMPLE 3

Thank you!

